JCMA

Recommended cables applicable to increasing the conductor size

ECSO design is recommended to be applied to Low-voltage Cross-linked Polyethylene Insulated Cables (CVT) and Low-voltage eco-cables (EM-CET) used in factories and buildings which are operated with high loading or medium loading within the operating categorization.

If applied to transmission and distribution cables with high loading, there is a big advantage, but it is necessary to pay attention because size up (optimization) may affect the strength of the steel tower and the utility pole, the diameter of the duct, etc. Low-voltage cables used in factories, buildings, etc. are laid in racks (shelves) and pits (grooves) and are recommended because they are relatively unlikely to have problems in application.

Selection Table - ECSO (Environmental Current Rating) Table

The following is the environmental current rating calculated as JCS 4521:2014

Conductor Size	CVT Environmental Current Rating (A)			
	High Loading Operation	Mid. Loading Operation	Low Loading Operation	
8 mm ²	8	9	12	
14 mm ²	13	15	20	
22 mm ²	20	23	31	
38 mm ²	32	37	49	
60 mm ²	55	64	85	
100 mm ²	82	95	127	
150 mm ²	107	124	165	
200 mm ²	151	174	232	
250 mm ²	182	210	280	
325 mm ²	285	329	439	
200 mm ² dual	302	348	464	
250 mm ² dual	364	420	560	
325 mm ² dual	570	658	878	

Table2. Environmental Current Rating

Conductor Size	EM-CET Environmental Current Rating (A)						
	High Loading Operation	Mid. Loading Operation	Low Loading Operation				
8 mm ²	8	9	12				
14 mm ²	13	15	21				
22 mm ²	21	24	33				
38 mm ²	34	39	52				
60 mm ²	59	68	91				
100 mm ²	88	102	137				
150 mm ²	116	134	179				
200 mm ²	164	189	252				
250 mm ²	196	226	302				
325 mm ²	306	353	471				
200 mm ² dual	328	378	504				
250 mm ² dual	392	452	604				
325 mm² dual	612	706	942				

• High loading: 100% in the daytime, 60% to 80% in the night • Medium loading: 100% in the daytime, 50% in the night • Low loading: 100% only in the daytime

Standards to be referred

- (1) Japanese Standard: JCS 4521:2020 "Optimal current calculation considering the environment and economy of electric cables"
- (2) JEAC 8001-2016 "The Interior Wiring Code"
- (3) International Standard: IEC 62125 ED.1.0 :2019 "Environmental considerations specific to insulated electrical power and control cables"

We at JCMA are making every possible effort to ensure all the data and information provided on this brochure are accurate. However, we make no guarantee or warranty regarding the accuracy of them. We do not intend to state that the data and information are correct, without any errors, reliable, or most updated. We may change or update the information on this brochure without any notice. Any inquiries and comments are to be made to JCMA.

Konwa Bldg., 2nd Floor, 1-12-22, Tsukiji, Chuo-ku, Tokyo, JAPAN 104-0045

TEL 03-3542-6035 FAX 03-3542-6037

https://www.jcma2.jp/index.html JCMA proprietary Introducing New Design Technology

Considering the environmental and economical aspects

(ECSO: Environmental and Economical Conductor Size Optimization)

Conventional Design

Cost reduction by increasing the conductor size

The Japanese Electric Wire & Cable Makers' Association

JCMA proprietary

ECSO

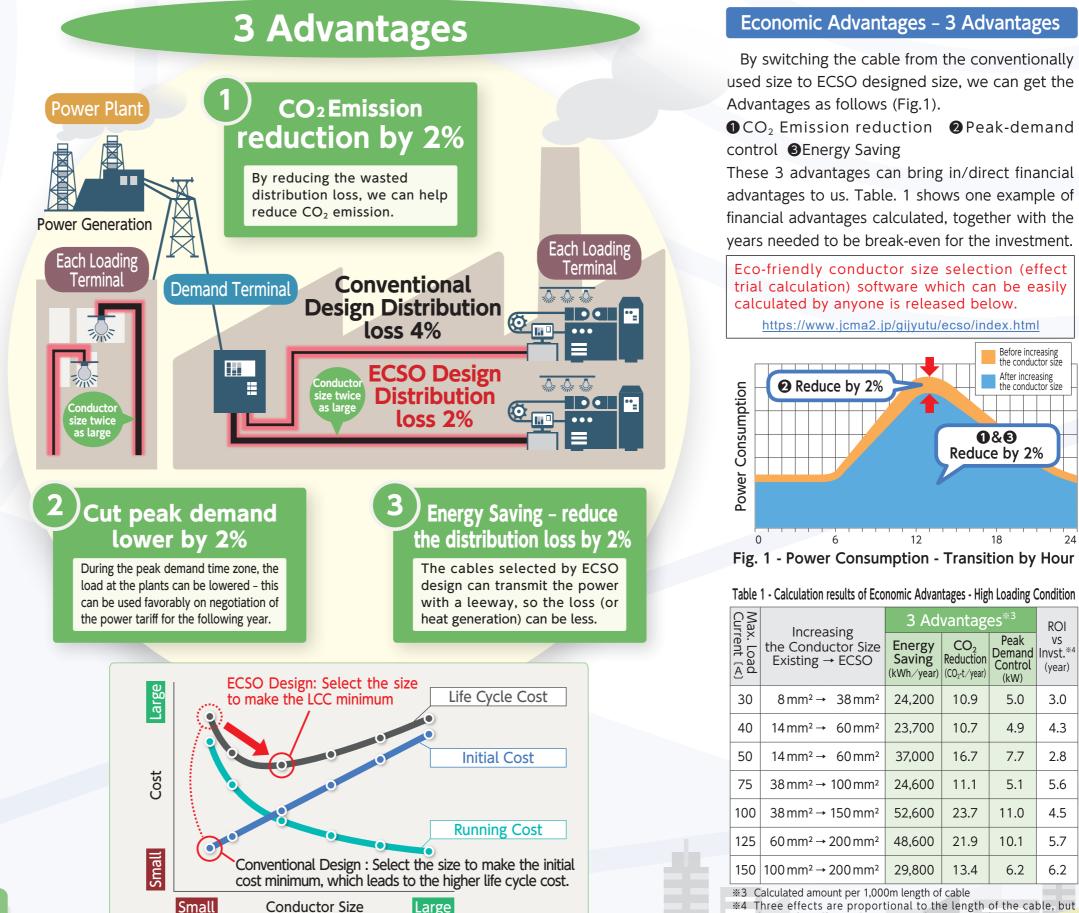
Design

Ecology with Economy!

Outline

By increasing the conductor size of the power cable, you can reduce the transmission / distribution losses, which leads to reduction of CO₂ emissions and energy saving.

We at JCMA have established the design technologies of optimum conductor size (ECSO^{*1}) to publish "JCS 4521: Calculation of the Environmental Current Rating for the Electric Cables", which put the ECSO design methods together. This standard is also introduced in the "JEAC 8001-2016 The Interior Wiring Code ". Since the environmental issues need to be addressed in a global base, we are making the term, ECSO as an Internationally Common Key Word, to ensure the intelligence to be shared globally, and to have it as a global standard.


%1 Environmental and Economical Conductor Size Optimization

Design Technology for Optimum Conductor Size (ECSO)

From 'Minimum Initial Cost' to 'Minimum Life Cycle Cost' *2

Preference has always been given to the lowest initial cost, i.e., the smallest possible conductor, as long as safety measures (current rating and preventing the voltage drop) are secured. Design technology for optimum conductor size (ECSO) is to define the most appropriate size to make the life cycle cost lowest, which means the larger cables. This technology considers both economical and environmental aspects, to make it possible to design the optimum conductor size.

%2 Life Cycle Cost = Initial Cost + Running (operational) Cost

JCMA proprietary

May	Increasing	3 Ad	ROI		
	the Conductor Size Existing → ECSO	Energy Saving (kWh/year)	CO ₂ Reduction (CO ₂ -t/year)	Peak Demand Control (kW)	VS Invst. ^{**4} (year)
)	$8 \text{ mm}^2 \rightarrow 38 \text{ mm}^2$	24,200	10.9	5.0	3.0
)	14 mm ² → 60 mm ²	23,700	10.7	4.9	4.3
)	$14 \text{ mm}^2 \rightarrow 60 \text{ mm}^2$	37,000	16.7	7.7	2.8
)	38 mm ² → 100 mm ²	24,600	11.1	5.1	5.6
0	$38 \text{ mm}^2 \rightarrow 150 \text{ mm}^2$	52,600	23.7	11.0	4.5
5	$60 \mathrm{mm^2} \rightarrow 200 \mathrm{mm^2}$	48,600	21.9	10.1	5.7
С	$100 \text{ mm}^2 \rightarrow 200 \text{ mm}^2$	29,800	13.4	6.2	6.2

#4 Three effects are proportional to the length of the cable, but the number of years to recover the increased investment is determined regardless of length.